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Topographic waves in rectangular basins 
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(Received 15 July 1986 and in revised form 13 April 1987) 

The channel model of Stocker & Hutter (1986, 1987) is used to construct topographic 
wave solutions in a rectangular basin on the f-plane with variable but symmetric 
bathymetry. We ahow that in a narrow period band three types of eigenmodes can 
be discerned whioh exhibit looal, midscale and global structure, respectively. Wave 
motion can be trapped either at the long sides of the elongated basin (channel mode) 
or at the ends of it (bay mode) or alternatively, a basinwide phase rotation is 
observed (Ball mode). The new bay modes are explained as resonances of topographic 
wave reflection in a semi-infinife channel. The influence of the variation of the aspect 
ratio of the rectangle and the topography parameter on the wave periods is also 
investigated. 

1. Introduction 
Long-periodic signals in temperature- and velocity-time series recorded by 

moored instruments in the Great Lakes (Saylor, Huang & Reid 1980), the Lake of 
Lugano (Hutter, Salvadh & Schwab 1983; Mysak et al. 1985) and the Lake of Zurich 
(Hutter &, Vischer 1986) have been attributed to topographic waves; an overview is 
given in Stocker & Hutter (1987). 

Second-class motions have been studied analytically in some special domains : 
Lamb (1932) studied a circular basin with parabolic depth profile, and extensions 
thereof were presented by Saylor et al. (1980) ; elliptical basins were investigated by 
Ball (1965), Mysak (1985) w d  Johnson (1987~). In  a recent paper by Johnson 
(1987 b) a solution technique i s  presented which allows calculation of eigenmodes in 
semi-infinite channels and elangated basins with smooth boundaries. All these 
models showed mode features whioh could be well identified in the observations. 
Furthermore, by adequately adjusting the free parameters in these models, the 
theoretical periods could be brought into close proximity to the periods deduced from 
the measured time series. An outstanding feature of these solutions is their global 
nature : water particles in the entire lake basin are in motion, and the gyres extend 
over a substantial portion of the basin. As a result, the trace of the topographic wave 
could be detected almost everywhere in the basin. 

While the analytical results of the circular and elliptical basins yield wave 
structures which are at least in qualitative agreement with observations, it must be 
admitted that the bathymetry of the real basins is not closely approximated in these 
cases. This is why the topographic wwe equation has been numerically solved for the 
Lake of Lugano by the finite element method (Trosch 1984) with results which do not 
at all support the interpretation using models known so far. He fmds that solutions 
in the 65- to 95-hour period range are localized to the two narrow ends and the Bay 
of Lugano, whereas the majority of the basin remains unaffected. Thus we ask : Are 
these long periodic phenomena indeed interpretable as topographic waves ? 
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On the other hand numerical finite difference computations for channels (Bauerle 
1986 ; Bauerle & Hutter 1987, paper in preparation) have indicated that an unusually 
high resolution of the discretized topographic wave equation is needed to calculate 
accurately the dispersion relation. This favours spectral methods and suggests the 
use of ODE-integrators because with them high-accuracy forward and multi-step 
integration is possible. 

To overcome the limitations and difficulties associated with idealized basins and 
numerical solutions we introduce an alternative procedure. Using the Method of 
Weighted Residuals (Finlayson 1972), by expanding the mass transport stream 
function along the narrow direction of an elongated basin in terms of a complete set 
of shape functions with unknown coefficients, we transform the topographic wave 
operator into an ODE-operator for the unknown coefficient functions. 

Section 2 introduces the governing equations and explains this transformation. 
Numerical solutions of topographic waves are collected in $3.1, their convergence 
and parameter properties are investigated in $3.2. A physical interpretation of the 
new bay type is given in $3.3. 

2. Mathematical model 
Conservation of mass and angular momentum in a rotating homogeneous fluid 

under no external forces can be expressed by stating that the potential vorticity of 
each fluid particle be conserved. With the mass transport stream function $, and 
extracting a harmonic time dependence e-iwt and employing the rigid-lid assumption, 
this yields the boundary-value problem 

$ = o  o n a g ,  J 
where H is the water depth, f the Coriolis parameter, w the frequency, V the 
horizontal gradient operator, 2 a unit vector in the direction opposite to gravity, and 
9 is the lake domain with boundary 3 9 ,  through which no mass flux is assumed. The 
vertically averaged velocity field u is obtained from (2.1) via the formula 

1 
H u = - (2 x V$) . 

Henceforth (2.1) will be used in dimensionless form. Horizontal lengths will be scaled 
with Lo, depth with H ,  and frequencies with the Coriolis parameter which will be 
assumed to be constant (f-plane). Thus (2.1) transforms to 

$ = o  o n a g ,  J 
where r = w/f  and all variables and operators are now dimensionless. We further 
assume that the topography of the rectangular basin is symmetric with respect to its 
middle axis, i.e. H ( s , n )  = H(s ,  -n), B+(s) = -B-(s )  = iB(s).  We identify it with the 
s-axis of the natural coordinate system (8, n, z) choosing the origin at one end of the 
basin, see figure 1.  
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FIGURE 1. Elongated lake and transverse section in a natural (8,  n, 2)-coordinate system. The 
thalweg axis (n = 0) may be a centre of symmetry and have curvature K(B). 

The basin is long in the s-direction and narrow in the n-direction. This suggests 
solving (2.3) by the shape function expansion 

N N 

$(s, f i )  = c P,+(5,4 $,+(4 + r, P,-(s, 4 $As), (2.4) 

where P,'(s, n) are symmetric and antisymmetric preselected functions with respect 
to n and $$(s) are unknown coefficient functions. For instance 

Or-1 Or-1 

in which B(5) is the scaled width of the symmetric basin. When the rectangle B is 
constant, the curvature K vanishes, and we adopt the profile 

H(s ,  n) = h(s) 1 +s- - (0 < 8 < L, - iB < n < $B), (2.6) 

with constant e and p (0 < p < 00). This bathymetry possesses a finite shore depth 
sh(s), which is necessary to have ( a H / h ) / H  bounded everywhere. 

Stocker & Hutter (1986, 1987) explained in detail how the boundary-value 
problem (2.3) is transformed to a new two-point boundary-value problem for the 
coefficient functions +:(s) in (2.4). This is achieved by a weighted integration of (2.3) 
over the small direction and the result is 

( El? 
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Evidently, M is a second-order matrix differential operator and KOo, etc. are 2iV x 2N 
real matrices whose entries depend on E and q ;  these are given in Stocker & Hutter 
(1987). Moreover, M has constant coefficients whenever h-'(dh/ds) = constant. Here 
it is assumed that M varies with 8 through an arbitrary thalweg depth h(s).  

With the truncated expansion (2.4) an approximation is introduced, but it is hoped 
that, by an appropriate selection of the shape functions P$(s ,n) ,  one can keep the 
order N of the model small. We shall see that in praotice N = 2 is often sufficient. 
Problem (2.7) only contains one spatial dimension and, therefore, permits use of a 
fourth-order Runge-Kutta scheme. 

For the numerical solution it is advantageous to transform (2.7) to standard form. 
With 

'Y E (Re yt+, Re w-, Re @+, Re @- ; Im yt+, Im y-, Im @+, Im 9-), 

(2.7) corresponds to the real system 

I d 

BY=O (8  = 0, L) .  

-y=A(a )V  ds (0 < 8 < L ) ,  

This system has the dimension 8 N ;  8 is a diagonal matrix with B,, = 1 for i = 1, . .., 
2N and i = 4iV + 1,  . . . , 6N ,  or else B,, F 0, and A is a 8N x 8N matrix which can easily 
be computed from M. 

Solutions of (2.9) were construoted numerically for the lake-axis depth profile 

(2.10) 

here with p = 2. 7 and p are paramgbrs; 7 > 0 guarantees that the depth is never 
zero and the exponent p could be varied such thet the longitudinal variation of the 
depth is more or less concentrated at the loqg epds of the lake. 

3. Numerical results 
In what follows, numerical solutions will be discussed without going into any 

details of computational peculiarities. Emphasis will be on the physical inter- 
pretation. 

3.1. A new type of topographic wave 
We investigate the spectrum sf topographic waves in a second- and a third-order 
model, i.e. N = 2 and N = 3. T b  bwin is rectangular with an aspect ratio r = 0.5, a 
parabolic cross-section (q = 2.0) and 4 thalweg varying as (sin)2. Figures 2 and 3 
display a selection of modes from the spectrum of a second- and a third-order model, 
respectively. It is apparent that iQ the period interval from 35 h to 140 h 
(corresponding to 46" latitude) a large variety of qualitatively different eigenmodes 
can be detected. According to the complexity of their modal structure we distinguish 
three types of eigenmodes. 

Type 1 is the well-known modal pattern described by all exact models of 
topographic waves in enclosed basins. It is akin to Ball's solutions (Ball 1965) and 
therefore called BUZZ-type. Both the linear (r = 0.155) and the quadratic (r = 0.213) 
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1 B " = 2  1 
Contours H = constant 

.--.. uo = 0.261 (64.7 h)-------  

Type 3 

u = 0.254 (66.5 h) 

CT = 0.248 (68.1 h) 

u = 0.215 (78.6 h) 

u = 0.207 (81.6 h) 

FIQUBE 2. Selection through the spectrum of topographic wave modes in a second-order model. The 
eigenfrequencies increaae towards the top of the figure. The contour lines of @ are plotted for time 
t = 0 (left) and t = fT (right). Three types of solution can be distinguished and cuts of the vertical 
linea indicate further modes not shown here. The parameters are: N = 2, r = 0.6, q = 2.0, E = 0.06, 
q = 0.01 and f = 2rr/16.9 h has been used. 
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Type 1 

1 D & = 3  

Contours H = constant 

u = 0.155 (109 h) 

Type 2 

1- 
u =  0.142(119h) 

Type 3 

u = 0.259 (65.3 h) 

u = 0.205 (82.4 h) 

u = 0.163 (104 h) 

FIQIJRE 3. Same as figure 2 for a third-order model N = 3. 

Ball mode occur in the spectrum, and additional eigenmodes are identified as type 1. 
All exact models existing so far, have shown qualitatively similar solutions. 
Generally, Ball modes consist of a few largescale vortices moving counterclockwise 
(on the northern hemisphere) around the basin and the water in the whole basin 
underlies this wave motion. 
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FIQTJRE 4. (a) Schematic plot of one mode unit of the dispersion relation of topographic waves in 
an infinite channel. An Nth-order model consists of N mode units, each of which exhibits three 
regimes where the wavenumbers are real, complex and imaginary, respectively. (b)  An enlarged 
portion of (a). Type 2 modes occur above the cutoff frequency a,. 

Type 2, with only a few candidates in this frequency interval, can be called bay- 
type. Wave motion is mostly trapped at the long ends of the lake ; very weak activity 
is experienced in the lake centre and along its long sides. The pattern shows one or 
more midscale gyres which do not propagate along the entire isobaths (lines of 
constant f / H )  but are rather trapped in the bays. This type arises above the cutoff 
frequency Q, for topographic waves in an infinite channel (see below) and thus 
embraces contributions with non-real wavenumbers. This is a new result, and these 
modes were neither detected by the analytic models nor by the crude lake model 
(channel with vertical endwalls) proposed by Stocker & Hutter (1986). 

Type 3, eventually, appears most frequently in the spectrum. Along the long 
boundaries of the basin a large number of small-scale vortices is observed. The 
pattern is very similar to that found in straight infinite channels and in elongated 
lakes, see Johnson (1987 b) ; type 3 is thus named channel-type. 

The modal structure and related properties of the different types can easily be 
explained with the help of the Rossby dispersion relation. Figure 4(a)  displays one 
mode unit of the dispersion relation of topographic wave propagation in an infinite 
channel. Summarizing the results of Stocker & Hutter (1986) we mention that each 
wave mode is associated with a mode unit consisting of three subsequent regimes : for 
Q < Q, the wavenumbers are real and u(k)  takes the familiar form with a critical point 
(Q,, k,) where the group velocity is zero; for Q > Q, the wavenumbers take complex 
values accounting for an exponential decay or growth of the stream function in 
space ; in the third regime k is purely imaginary. Regime 1 and partly regime 2 are 
enlarged in figure 4(b). As is obvious from figures 2 and 3, type 1 enjoys the property 
that increaaing u brings about more spatial structure. It follows that this type 
consists primarily of modes with wavenumbers k < k,. For k < k,, au/ak > 0 and so 
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the wavelengths of the contributing modes decrease with growing u. Type 3, on the 
other hand, reveals the opposite property the scale of the wave pattern gradually 
decreases with decreasing frequency. These solutions are mostly made up of modes 
with k > k,. In this range, aulak < 0 and consequently the wavelengths decrease with 
decreasing 6. 

The findings of Johnson (19873) substantiate the above statements. His 
approximate model of an elongated basin allows calculation of eigensolutions which 
simply evolve from a quantization of the wavenumber k of the dispersion relation 
g(k )  of the infinite channel. Modes termed here as Ball-types are characterized there 
similarly by 0 < k < k,, whereas channel-types have k > k,. Mathematically, a 
distinction of these two types, therefore, i$ not compelling. 

The existence of eigenmodes above the cutoff frequency u, is a new result. Modes 
in this regime have complex wavenumbers and this explains why bay-type waves 
show the conspicuous structure. Wave activity is close to the lake ends, and away 
from it is exponentially evanescent. It remains an open question whether there exist 
super-inertial eigenmodes with u > 1 or w >f. These modes could interfere with 
gravity waves and the low-frequency approximation (which led to (2.1)) is not 
appropriate any longer. A test has shown that a model with N = 2 and the 
parameters given in figure 2 has no eigenfrequencies in the interval 0.5 < 6 < 4. 

The physical consequences of these bay-types are further discussed in 3.3. The 
occurrence of bay-trapped modes casts light on recent finite element results (Trosch 
1984) of topographic waves in the northern part of the Lake of Lugano. These seemed 
to contradict entirely the applicability of analytic models to real basins because 
fundamental modes (Ball modes) were not found in the 65 h-120 h period interval. 
They showed rather small-scale eigenmodes (akin to type 3) and, more interesting, 
modes (akin to type 2) which were clearly trapped to the three Bays of Melide, 
Lugano and Porlezza, respectively. Figure 5 shows three of these bay-type solutions 
in the period domain of interest. Each mode is trapped in one of the bays not 
influencing the rest of the basin and the few vortices exhibit roughly the scale of the 
bay. The rectangular basin, a much simpler configuration than the Lake of Lugano, 
reveals equally bay-type modes together with the known Ball-type solutions which 
in the interested period range were not found by Trosch (1984). This model, 
therefore, links these two different approaches, and demonstrates that the 
propagation of topographic waves in enclosed basins cannot be described merely by 
the exact models which exist so far. The rectangular basin incorporates two features 
which seem to be crucial for the analysis of topographic waves. As with all exact 
models, it has continuous depth contours which are vital for the existence of the Ball- 
type modes. Moreover, the exact models all have boundary lines which are similar to 
the depth contours. The boundary of the finite-element model of the Lake of Lugano, 
however, incorporates bays and global curvature, which destroy similarity and 
smoothness ; the rectangular basin lacks similarity of the shore line and isobaths as 
well. This is likely to make the existence of the bay-type possible. 

3.2. Convergence and parameter dependence 
This model is merely an approximation because of the truncation of the series 
expansion at some finite N. Its quality strongly depends on the type of wave 
considered. It is only the transverse variability which is limited for a given order N, 
whereas the solution is well represented along the lake axis by virtue of the 
Runge-Kutta scheme. Ball-type modes have large-scale vortices, and a good 
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= O  

= fT 

FIGURE 5. Three modes of topographic waves in the northern part of the Lake of Lugano from finite 
element calculations by Trosch (1984). The wave motion is trapped in the three bays shaded in the 
inset. 

N =  1 N = 2  N = 3  

cr = 0.181 u = 0.21 1 u = 0.213 

u = 0.268 u = 0.142 u = 0.248 

FIGURE 6. Convergence of both, eigenfrequency and stream function of the quadratic Ball mode 
and a channel mode. The parameters are aa in figure 2. 

representation of these modes with comparatively few basis functions is expected. 
High orders of expansions are therefore not needed ; fast convergence is observed. By 
contrast channel-type solutions consist of small-scale modes with large wave- 
numbers. As waa shown in Stocker & Hutter (1986) convergence is slower for large 
wavenumbers and this must equally be expected for type 3 modes. 

Figure 6 demonstrates convergence of both eigenfrequency and stream function 
for the quadratic Ball mode and one-channel mode. Qualitative changes when 
increasing N = 1 to N = 2 regarding the stream function are observed. Whereas the 
lowest-order model predicts a coherent central gyre for the Ball-type, it splits into 
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N = l  N = 2  N = 3  

Ball-type 0.143 0.153* 0.155* 
0.181 0.211* 0.213* 
0.195 0.255* 0.260* 

Channel- type 0.151 0.254* 0.273* 
0.142 0.248* 0.268* 
0.111 0.215* 0.253 

TABLE 1. Convergence of three selected eigenfrequencies in a basin with q = 2.0, E = 0 . 0 5 , ~  = 0.01 
for the Ball- and channel-type. Asterisks indicate plotted modes in figures 2 and 3. 

N=2* N=3 N = 4  

tT = 0.462 u = 0.395, u = 0.460 

FIGURE 7. Converging eigenfrequency and stream function of a bay mode. The parameters are 
aa in figure 2. 

N = 2  n = 3  N = 4  

Bay-type 0.395 0.460 0.462 
0.297 0.314 0.318 
0.263 0.284 0.293 
0.115 0.240 0.251 

TABLE 2. Convergence of the eigenfrequencies of four selected bay modes. The parameters are aa 
in table 1. 

two vortices for higher orders. Equally, the first-order model yields mass transport 
across the lake basin and thus a strong interaction of the two lateral beat patterns 
of the channel-type. This is lifted as N increases, and N = 2 already shows two nearly 
independent structures. Table 1 gives the eigenfrequency for some more modes of the 
Ball- and channel-type. It is consistent with the properties of the dispersion relation 
that convergence is slower as cr decreases. 

It is of particular importance to test convergence for the new bay mode. This is 
shown in figure 7 and table 2. Bay modes for N = 1 were not found and convergence 
is studied for models up to N = 4. For N = 3 good estimates have been achieved for 
both the eigenfrequency and the stream function. It is characteristic of the bay mode 
that it has very small values of $ in the central area of the basin. Comparing it for 
N = 2 and N = 3 we observe that the solutions exhibit a different parity with respect 
to the lake centre. Moreover, for higher orders the pattern was only obtained by a 
forward and backward integration from s = 0 and s = L, respectively. The stream 
function of the bay mode is strongly attenuated in the centre and hence the basic 
problem is to bring numerical information through the ‘dead’ zone towards the 
opposite end of the lake. Perhaps the use of a multi-step integration scheme would 
bring some improvement. 
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Ball quadratic r = 0.5 r = 0.4 r = 0.3 

q =  1.0 0.267 0.250 0.219 
q = 2.0 0.21 1 0.195 0.170 

TABLE 3. Topography q and aspect ratio r influencing the eigenfrequency of the quadratic Ball 
mode. The parameters are N = 2, E = 0.05, 7 = 0.01. 

q = 5.0 0.140 0.123 ? 

r = 0.5 Ball-type Bay-type Channel-type 

q = 1.0 0.200 0.299 0.250 
q = 2.0 0.153 0.395 0.232 
q = 5.0 0.097 0.415 0.153 

TABLE 4. Topography effect on the frequency of the three wave types. The parameters are &B in 
table 3. 

q = 2.0 Ball-type Bay-type Channel-type 

r = 0.5 0.153 0.263 0.232 
r = 0.4 0.139 0.267 0.251 
r = 0.3 0.118 0.269 0.258 

TABLE 5. Aspect ratio effect on the frequencies of the three types. The parameters are as in 
table 3 and the caae r = 0.5 matches table 4 with q = 2.0. 

We next study the influence of the topography parameters q and the aspect ratio 
T on the eigenfrequencies of the different modal types. Table 3 collects the results for 
the solutions that correspond to Ball’s quadratic mode. As expected from the 
behaviour of the dispersion relation in a straight infinite channel the shape of the 
transverse topography has a dominant influence on the values of the eigenfrequency. 
Steeper profiles (q = 5.0) lower the eigenfrequencies as q governs the value of vo. An 
equal but weaker effect on Ball-type modes is experienced when the aspect ratio is 
decreasing. Table 3 demonstrates that these modes are much more governed by the 
transverse depth profile than by the aspect ratio. 

Tables 4 and 5 investigate the influence of the two bathymetric parameters q and 
r on the three wave types. Again the topography effect (table 4) is seen to be more 
influential. By going from a triangular depth profile (q = 1.0) k to a very steep U- 
shaped profile (q = 5.0) the eigenfrequencies diminish by up to a factor of 2. As far 
as the topography effect is concerned, the Ball and channel types react the same way, 
whereas the eigenfrequencies of the bay-type modes increase weakly with q. 

Table 5 shows that basins with a smaller aspect ratio sustain Ball-type waves with 
decreased eigenfrequencies. This decrease is over-proportional as it is enhanced for 
smaller aspect ratios. By contrast, bay- and channel-type solutions exhibit the 
opposite behaviour. Decreasing the aspect ratio increases the eigenfrequency ; this 
time the response is under proportional and for bay-type solutions the dependence 
of (i on r is very small. 
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u > u,, u = 0.395 u < u,, u = 0.242 

FIQURE 8. Reflection patterns for u > uo and u < u,, in a semi-infinite channel with the depth 
profile (3.1) and 8 = a0 is indicated by the dashed vertical line. For u > uo the solutions are bay- 
trapped and spatially evanescent. Frequency and wave pattern coincide with the mode on the top 
of figure 2. The parameters are aa in figure 2. 

3.3. The bay-type, further remarks 
The occurrence of bay-trapped modes in enclosed basins was unexpected and raises 
further questions concerning the properties of solutions of the eigenvalue problem 
(2.1). 

When the aspect ratio of the basin is decreased the bay vortices of these modes lie 
farther and farther apart and we wonder whether these isolated gyms become 
uncoupled. There are two points to be remarked upon. First, basins with no 
symmetry seem to sustain decoupled bay-modes as in figure 5 ;  finite element 
calculations point in this direction. Secondly, with our procedure it is very difficult 
to determine the parity of these solutions with respect to the long axis of the basin. 
In this direction very fine resolution is needed to obtain reliable solutions. This 
problem was addressed above and the results suggest considering again semi-infinite 
channels as was done in earlier work (Stocker & Hutter 1986). It is now proposed to 
model the bay-section of the semi-infinite channel by a sin2-thalweg profile ; lines of 
f / H  = constant are continuous and differentiable. Results are presented in Stocker 
& Hutter (1987) and Stocker (1987) we only anticipate those relevant in this context. 
Applying the same shooting method to the composed channel-axis depth profile 

[ T+sin2 (e) (0 < s < so), 
h(s )  = 

solves the problem of topographic wave reflection in a semi-infinite channel. Recall, 
that for u > go, freely propagating waves are not allowed in the domain 5 2 so of the 
infinite channel. It therefore came as a surprise to find non-trivial solutions above the 
cutoff frequency. This is shown in figure 8 ; contour lines of two solutions are plotted 
for t = 0 (above) and t = iT (below) belonging to the regimes u > uo (left) and 
u < uo (right), respectively. The latter agree with the solutions of Johnson (1987b). 
The typical bay-trapped structure is visible and due to contributions of modes with 
only complex wavenumbers in s > so, i.e. the stream function is exponentially 
evanescent there. Calculations have demonstrated that such solutions only exist for 
particular frequencies. For u < no, however, every frequency sustains a free wave 
with real wavenumbers forming true reflection pattern. At u = 0.1 15, a frequency 
below uo exceeding, however, the cutoff of the second mode unit, a further bay-mode 



Topographic waves in rectangular basins 119 

appears (not shown in figure 8). Weak wave activity in the region of uniform depth 
s > so gives rise to strong wave motion in the shore-zone 8 < so. This mode 
corresponds to the bay-mode at the same frequency in figure 2. The spectrum of the 
semi-infinite channel thus embraces both a discrete and continuous part. It turns out 
that the discrete spectrum is identical to the spectrum of the bay-type modes with 
CT > go of the rectangular basin, see figure 2. 

Physically, these modes have the character of resonances of the system, and a bay- 
type mode in the rectangular basin can then be interpreted as the superposition of 
two resonances at either lake end. The longer a basin is, the weaker will be the 
interaction of the individual bays, which confirms the above conjecture. Eventually, 
a bay in an elongated lake can sustain its individual and isolated bay-mode. This 
agrees with the results in figure 5 and settles the former controversy. It also explains 
the very weak dependence of the bay mode on the aspect ratio which is a global 
measure of the lake basin. Bay modes will rather depend on the local geometry of the 
sustaining bay. This is a result which can already be inferred from figure 5. 

4. Conclusions 
The channel models, derived using the Method of Weighted Residuals and being 

an effective tool in solving the problem of topographic wave motion in straight 
infinite channels, were applied to rectangular baains with continuous depth lines. The 
partial differential equation in two spatial dimensions was transformed into a system 
of ordinary differential equations with non-constant coefficients, the size of which 
depended on the order of the transverse functional expansion. This system was 
solved by applying a Runge-Kutta scheme and the eigenfrequencies and associate 
stream functions were found by satisfying a no-flux condition at the far end of the 
basin. 

Three qualitatively different types of solutions were discovered : Ball-, bay- and 
channel-type. The occurrence of modes with a few large-scale vortices is well known 
and was expected from results of earlier analytic models such as Ball (1965), Johnson 
(1987 b) (small wavenumbers) and others. In  addition, channel-type solutions 
consisting of many small-scale vortices were found. These are akin to those emerging 
in the model of Johnson (1987b) (large wavenumbers). The spectrum, however, 
incorporates yet another type of solution. Wave activity can be trapped in the bays 
of the lake in the form of a few midscale gyres. This bay type arises at frequencies 
above the cutoff of the individual mode units and a qualitative agreement with finite 
element solutions is found. 

The investigation of bay modes in semi-infinite channels with smooth depth-lines 
has brought more understanding of the trapping mechanism. A bay mode is then 
interpreted as being a resonance of the sustaining system. This makes it clear why 
all previous analytical models have not given an indication of the existence of bay 
modes. Since in these, shorelines and isobaths are similar, there is no distinct and 
localized region within the basin which could act as a resonator. Therefore, 
resonances and with it bay modes are unlikely to occur. These basins were, however, 
very special configurations scarcely found in nature. In a real lake with curvature 
and bays it has to be reckoned that each bay can sustain its own mode. 

From an experimental point of view this finding is equally important. The three 
types can have similar frequencies which are difficult to discern. In spite of their 
spectral proximity they exhibit distinctly different transport patterns and particle 
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paths, It follows that a very accurate knowledge of the time evolution of the velocity 
vector is required in order to distinguish clearly the individual types. 

Further properties of the bay mode and a unified classification of the three types 
in terms of topographic wave reflection are the topic of current research. 

We thank I. Wiederkehr and C. Bucher for preparing the drawings. 
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